事实上,3D 打印也称为增材制造,是一个总称,涵盖了几种截然不同的 3D 打印工艺。这些技术是天壤之别,但关键过程是相同的。例如,所有 3D 打印都从数字模型开始,因为该技术本质上是数字化的。零件或产品最初是使用计算机辅助设计 (CAD) 软件设计或从数字零件库获取的电子文件。然后设计文件通过特殊的构建准备软件将其分解成切片或层以进行 3D 打印,生成3D打印机要遵循的路径指令。接下来您将了解这些技术之间的区别以及每种技术的典型用途。
材料挤出顾名思义:材料通过喷嘴挤出。通常情况下,这种材料是一种塑料细丝,通过一个加热的喷嘴进行熔化和挤出。打印机沿着通过软件得到的工艺路径将材料放置在构建平台上。然后灯丝冷却并凝固形成固体物体。这是最常见的 3D 打印形式。乍一看这听起来很简单,但考虑到挤出的材料,包括塑料、金属、混凝土、生物凝胶和各种食品,这其实是一个非常广泛的类别。这种类型的 3D 打印机价格从100美元到七位数不等。
●材料挤出的子类型:熔融沉积建模 (FDM)、建筑 3D 打印、微型 3D 打印、生物 3D 打印 ●材料:塑料、金属、食品、混凝土等 ●尺寸精度: ±0.5%(下限±0.5mm) ●常见应用:原型、电气外壳、形状和配合测试、夹具和夹具、熔模铸造模型、房屋等。 ●优势:成本最低的 3D 打印方法,材料范围广 ●缺点:通常材料性能较低(强度、耐用性等),通常尺寸精度不高
1.熔融沉积成型 (FDM)
△FDM 零件可以在各种 3D 打印机上用金属或塑料制成
FDM 3D 打印机是一个价值数十亿美元的市场,拥有数以千计的机器,从基本型号到制造商的复杂型号。FDM机器被称为熔丝制造 (FFF),这是完全相同的技术。与所有 3D 打印技术一样,FDM 从数字模型开始,然后将其转换为3D打印机可以遵循的路径。使用 FDM,将线轴上的一根(或一次几根)灯丝装入 3D 打印机,然后送入挤出头中的打印机喷嘴。打印机喷嘴或多个喷嘴被加热到所需温度,使灯丝软化,从而使连续的层连接起来形成一个坚固的部件。
当打印机沿 XY 平面上的指定坐标移动挤出头时,它会继续铺设第一层。然后挤出头上升到下一个高度(Z 平面),重复打印横截面的过程,一层一层地构建,直到物体完全成型。根据对象的几何形状,有时需要添加支撑结构以在打印时支撑模型,例如,如果模型具有陡峭的悬垂部分。这些支撑在打印后被移除。一些支撑结构材料可以溶解在水或另一种溶液中。 △FDM 3D 打印机为业余爱好者、小型企业和制造商提供范围广泛的机器(来源:Creality、Raise3D、Stratasys)
2.3D生物打印
△3D 生物打印与传统 3D 打印类似,但原料差异很大
3D 生物打印或生物 3D 打印是一种增材制造工艺,其中将有机或生物材料(例如活细胞和营养素)结合起来以创建类似组织的天然三维结构。换句话说,生物打印是一种3D打印,可以生产从骨骼组织和血管到活组织的任何东西。它用于各种医学研究和应用,包括组织工程、药物测试和开发,以及创新的再生医学疗法。3D 生物打印的实际定义仍在不断发展。从本质上讲,3D 生物打印的工作原理与 FDM 3D 打印类似,并且属于材料挤出系列。(尽管挤出并不是唯一的生物打印方法)
3D 生物打印使用从针排出的材料(生物墨水)来创建打印层。这些被称为生物墨水的材料主要由活物质组成,例如载体材料中的细胞——如胶原蛋白、明胶、透明质酸、蚕丝、海藻酸盐或纳米纤维素,充当结构生长和营养物质的分子支架,提供支持。
3.建筑 3D 打印
△建筑 3D 打印
建筑 3D 打印是一个快速发展的材料挤出领域。该技术涉及使用超大型 3D 打印机(通常高达数十米)从喷嘴中挤出混凝土等建筑材料。这些机器通常以龙门架或机械臂系统的形式出现。3D建筑打印技术如今用于住宅、建筑特色以及从水井到墙壁的建筑项目。有研究者表示,它有可能显着改变整个建筑行业,因为它减少了劳动力需求并减少了建筑垃圾。
美国和欧洲有数十座 3D 打印房屋,并且正在研究开发 3D 建筑技术,该技术将使用在月球和火星上发现的材料为未来的探险队建造栖息地。用当地土壤代替混凝土打印作为一种更可持续的建筑方法也受到关注。
二、还原聚合
△使用激光的还原聚合
桶聚合(也称为树脂 3D 打印)是一系列 3D 打印工艺,它使用光源在桶中选择性地固化(或硬化)光敏聚合物树脂。换句话说,光线精确地指向液体塑料的特定点或区域以使其硬化。第一层固化后,构建平台将向上或向下移动(取决于打印机)少量(通常在 0.01 和 0.05 毫米之间),下一层固化,与前一层连接。逐层重复此过程,直到形成 3D 部件。3D 打印过程完成后,清洁物体以去除剩余的液态树脂并进行后固化(在阳光下或紫外线室中)以增强部件的机械性能。
三种最常见的桶聚合形式是立体光刻 (SLA)、数字光处理 (DLP)和液晶显示器 (LCD),也称为掩模立体光刻 (MSLA)。这些类型的 3D 打印技术之间的根本区别在于光源及其用于固化树脂的方式。
△大桶聚合利用光逐层硬化光敏树脂
一些 3D 打印机制造商,尤其是那些制造专业级 3D 打印机的制造商,已经开发出独特且获得专利的 光聚合变体,因此您可能会在市场上看到不同的技术名称。一家工业 3D 打印机制造商 Carbon 使用一种称为数字光合成(DLS) 的桶聚合技术,Stratasys 的 Origin 称其技术为可编程光聚合(P3),Formlabs 提供其称为低力立体光刻(LFS) 的技术,而 Azul 3D 是第一个将大面积快速打印(HARP) 形式的大桶聚合商业化。还有基于光刻的金属制造 (LMM)、投影微立体光刻(PμSL) 和数字复合材料制造(DCM),这是一种填充光聚合物技术,可将功能性添加剂(例如金属和陶瓷纤维)引入液体树脂中。
△立体光刻 (SLA)来自 3D Systems、DWS 和 Formlabs 的 SLA 3D 打印示例
SLA是世界上第一个3D打印技术。立体光刻技术由查克·赫尔 (Chuck Hull) 于 1986 年发明,他为该技术申请了专利,并成立了 3D Systems 公司以将其商业化。如今,该技术可供来自众多 3D 打印机制造商的爱好者和专业人士使用。SLA使用激激光束对准一桶树脂,选择性地固化打印区域内物体的横截面,逐层建造。当大多数 SLA 打印机使用固态激光来固化部件。这种桶聚合的一个缺点是,与我们的下一种方法 (DLP) 相比,点激光可能需要更长的时间来追踪物体的横截面,后者会闪烁光线以立即硬化整个层。然而,激光可以产生更强的光,这是某些工程级树脂所需要的。
与 DLP 类似,LCD 在某些条件下可以实现比 SLA 更快的打印时间。这是因为整个层一次曝光,而不是用激光点追踪横截面积。由于 LCD 单元成本低,这项技术已成为低价桌面树脂打印机领域的首选技术,但这并不意味着它没有得到专业使用,一些工业 3D 打印机制造商正在突破技术极限并取得令人瞩目的成果。
三、粉床融合
△粉末床融合
粉末床融合 (PBF) 是一种3D打印工艺,其中热能源选择性地熔化构建区域内的粉末颗粒(塑料、金属或陶瓷),以逐层创建固体物体。粉末床融合 3D 打印机在打印床上散布一层薄薄的粉末材料,通常使用一种刀片、滚筒或擦拭器。来自激光的能量融合粉末层上的特定点,然后沉积另一个粉末层并融合到前一层。重复该过程,直到制造出整个物体,最终产品由未融合的粉末包裹和支撑。
重复这些步骤,直到制造出所有物体。未烧结的粉末保留在原位以支撑物体,这减少或消除了对支撑结构的需要。从粉末床中取出零件并进行清洁后,无需其他必要的后处理步骤。零件可以抛光、涂层或着色。SLS 3D 打印机之间有许多差异化因素,不仅包括它们的尺寸,还包括激光的功率和数量、激光的光斑大小、加热床的时间和方式以及粉末的分布方式等。SLS 3D 打印中最常见的材料是尼龙(PA6、PA12),但也可以使用 TPU 和其他材料打印出柔韧的部件。
在 μSLS 中,将一层金属纳米颗粒墨水涂在基材上,然后干燥以产生均匀的纳米颗粒层。接下来,使用数字微镜阵列图案化的激光用于加热纳米粒子并将其烧结成所需的图案。然后重复这组步骤以在 μSLS 系统中构建 3D 部件的每一层。
3.激光粉末床融合 (LPBF)
△显示 SLM 精度的 Xact Metal 测试件(来源:Xact Metal)
在所有 3D 打印技术中,这一项的别名最多。这种金属 3D 打印方法的正式名称为激光粉末床熔化 (LPBF),也被广泛称为直接金属激光烧结 (DMLS) 和选择性激光熔化 (SLM)。在这项技术发展的早期,机器制造商为相同的过程创建了自己的名称,这些名称一直沿用至今。特别指出,上述这三个术语指的是同一过程,即使某些机械细节有所不同。
作为粉末床融合的一种子类型,LPBF 使用一个金属粉末床和一个或多个(最多 12 个)高功率激光器。LPBF 3D 打印机使用激光在分子基础上逐层选择性地将金属粉末融合在一起,直到模型完成。LPBF是一种高度精确的 3D 打印方法,通常用于为航空航天、医疗和工业应用创建复杂的金属零件。
△Sandvik 的 LPBF 金属 3D 打印
与 SLS 一样,LPBF 3D 打印机从分成切片的数字模型开始。打印机将粉末装入构建室,然后用刮刀(如挡风玻璃刮水器)或滚筒将其在构建板上铺成薄层。激光将层追踪到粉末上。然后构建平台向下移动,再涂上一层粉末并与第一层融合,直到构建出整个物体。构建室是封闭的、密封的,并且在许多情况下充满了惰性气体,例如氮气或氩气混合物,以确保金属在熔化过程中不会氧化,并有助于清除熔化过程中的碎屑。打印后,零件从粉末床中取出、清洗,并经常进行二次热处理以消除应力。剩余的粉末被回收再利用。
聚合物的材料喷射 (M-Jet) 是一种 3D 打印工艺,其中一层光敏树脂被选择性地沉积到构建板上并用紫外线 (UV) 光固化。在一层沉积和固化后,构建平台降低一层厚度,重复该过程以构建 3D 对象。M-Jet 将树脂 3D 打印的高精度与线材 3D 打印 (FDM) 的速度相结合,以创建具有逼真的颜色和纹理的零件和原型。
所有材料喷射3D打印技术都不完全相同。打印机制造商和专有材料之间存在差异。M-Jet 机器以逐行方式从多排打印头沉积构建材料。这种方法使打印机能够在不影响构建速度的情况下在一条线上制造多个对象。只要模型在构建平台上正确排列,并优化每条构建线内的空间,M-Jet 就可以比许多其他类型的树脂 3D 打印机更快地生产零件。
△来自 Stratasys、DP Polar / 3D Systems 和 Mimaki 的材料喷射 3D 打印机
用 M-Jet 制造的物体需要支撑,它在构建过程中由可溶解材料同时打印,该材料在后处理阶段被去除。M-Jet 是为数不多的 3D 打印技术之一,可提供由多材料打印和全彩色制成的物体。材料喷射机没有爱好者版本,这些机器更适用于汽车制造商、工业设计公司、艺术工作室、医院和所有类型的产品制造商的专业人士,他们希望创建准确的原型来测试概念并更快地将产品推向市场。与桶聚合技术不同,M-Jet 不需要后固化,因为打印机中的紫外线会完全固化每一层。
气溶胶射流
Aerosol Jet 是一家名为 Optomec 的公司开发的一项独特技术,主要用于 3D 打印电子产品。电阻器、电容器、天线、传感器和薄膜晶体管等组件均采用气溶胶喷射技术打印。它可以粗略地比作喷漆,但它与工业涂层工艺的区别在于它可以用于打印完整的 3D 物体。
NanoParticle Jetting (NPJ) 是为数不多的难以归类的专有技术之一,由一家名为 XJet 的公司开发,它使用带有数千个喷墨喷嘴的打印头阵列,可同时将数百万个超细材料滴喷射到超薄层的构建托盘上,同时同时喷射支撑材料。金属或陶瓷颗粒悬浮在液体中。该过程在高温下发生,喷射时液体蒸发,大部分只留下金属或陶瓷材料。生成的 3D 部件仅残留少量粘合剂,这些粘合剂在烧结后处理中被去除。
五、粘合剂喷射
△粘合剂喷射
粘合剂喷射是一种 3D 打印工艺,其中液体粘合剂选择性地粘合一层粉末的区域。该技术类型兼有粉末床熔合和材料喷射的特点。与 PBF 类似,粘合剂喷射使用粉末材料(金属、塑料、陶瓷、木材、糖等),并且与材料喷射一样,液体粘合剂聚合物从喷墨器沉积。无论是金属、塑料、沙子还是其他粉末材料,粘合剂喷射过程都是相同的。
塑料粘合剂喷射是一种与金属粘合剂喷射非常相似的工艺,因为它也使用粉末和液体粘合剂,但应用却大不相同。打印完成后,塑料部件会从其粉末床中取出并进行清洁,通常无需进一步处理即可使用,但这些部件缺乏 3D 打印工艺中的强度和耐用性。塑料粘合剂喷射部件可以填充另一种材料以提高强度。使用聚合物进行粘合剂喷射因其能够生产用于医学建模和产品原型的多色部件。
另一种独特且品牌特定的 3D 打印工艺不容易归入任何现有类别,实际上也不是粘合剂喷射,这就是HP 的Multi Jet Fusion。MJF 是一种聚合物 3D 打印技术,使用粉末材料、液体融合材料和细化剂。它不被认为是粘合剂喷射的原因是在这个过程中增加了热量,这会产生强度和耐用性更高的部件,而且液体并不完全是粘合剂。该过程的名称来源于执行打印过程的多个喷墨头。
在 Multi Jet Fusion 打印过程中,打印机在打印床上铺设一层材料粉末,通常是尼龙。在此之后,喷墨头穿过粉末并将熔化剂和细化剂沉积在其上。然后红外线加热装置在打印品上移动。无论在何处添加助熔剂,下层都会熔化在一起,而带有细化剂的区域仍保持粉末状。粉状部分脱落,产生所需的几何形状。这也消除了对建模支持的需要,因为下层支持打印在它们上面的层。为了完成打印过程,整个粉末床以及其中的打印部件被移动到一个单独的处理站,大部分松散的未熔融粉末被抽真空,可以重复使用。
Multi Jet Fusion 是一种多功能技术,已在汽车、医疗保健和消费品等多个行业中得到应用。
△HP Jet Fusion 5200 系列是 HP Multi Jet Fusion 3D 打印机的多种尺寸和样式之一(来源:惠普)
六、粉末定向能量沉积
定向能量沉积 (DED) 是一种 3D 打印工艺,金属材料在沉积的同时被强大的能量供给和熔化。这是最广泛的 3D 打印类别之一,包含许多子类别,具体取决于材料的形式(线材或粉末)和能量类型(激光、电子束、电弧、超音速、热量等)。 从本质上讲,与焊接有很多共同点。
该技术用于逐层打印,通常随后进行 CNC 加工,以实现更严格的公差。DED 与 CNC 的结合使用非常普遍,有一种称为混合 3D 打印的 3D 打印子类型,在同一台机器中包含 DED 和 CNC 单元的混合 3D 打印机。该技术被认为是一种更快、更便宜的小批量金属铸件和锻造件的替代品,以及用于海上石油和天然气行业以及航空航天、发电和公用事业行业应用的关键维修。
△DED 金属 3D 打印技术可以快速创建一个坚固的金属部件,然后可以加工到严格的公差
●定向能量沉积的子类型:粉末激光能量沉积、线弧增材制造 (WAAM)、线电子束能量沉积、冷喷涂 ●材料:各种金属,线材和粉末形式 ●尺寸精度: ±0.1 mm ●常见应用: 修复高端汽车/航空航天部件、功能原型和最终部件 ●优势:高堆积率,能够向现有组件添加金属 ●缺点:由于无法制作支撑结构而无法制作复杂的形状,通常表面光洁度和精度较差
Wire Directed Energy Deposition,也称为Wire Arc Additive Manufacturing (WAAM),是一种 3D 打印,它使用等离子或电弧形式的能量来熔化线材形式的金属,并通过机械臂将金属一层一层地沉积到表面,例如多轴转盘,形成一个形状。之所以选择这种方法而不是选择激光或电子束的类似技术,是因为它不需要密封室,并且可以使用与传统焊接相同的金属(有时是完全相同的材料)。
熔融直接能量沉积是一种 3D 打印工艺,它使用热量熔化金属(通常是铝),然后将其逐层沉积在构建板上以形成 3D 物体。该技术与金属挤出 3D 打印的不同之处在于,挤出使用内部含有少量聚合物的金属原料,使金属可挤出。然后在热处理阶段去除聚合物,而熔融DED用纯金属。人们也可以将熔融或液态 DED 比作材料喷射,但不是一系列喷嘴沉积液滴,液态金属通常从喷嘴流出。
这项技术的变体正在开发中,熔融金属 3D 打印机很少见。使用热量熔化然后沉积金属的好处是能够使用比其他DED工艺更少的能量,并可能直接使用回收金属作为原料,而不是金属丝或高度加工的金属粉末。
七、片材层压
△片材层压
片材层压在技术上是3D打印的一种形式,与上述技术有很大不同。它的功能是将非常薄的材料片堆叠和层压在一起以产生 3D 物体或堆叠,然后通过机械或激光切割以形成最终形状。材料层可以使用多种方法融合在一起,包括加热和声音,具体取决于材料,材料范围从纸张、聚合物到金属。当零件被层压然后激光切割或加工成所需的形状时,会产生比其他3D打印技术更多的浪费。